Uncovering hidden nodes in complex networks in the presence of noise
نویسندگان
چکیده
Ascertaining the existence of hidden objects in a complex system, objects that cannot be observed from the external world, not only is curiosity-driven but also has significant practical applications. Generally, uncovering a hidden node in a complex network requires successful identification of its neighboring nodes, but a challenge is to differentiate its effects from those of noise. We develop a completely data-driven, compressive-sensing based method to address this issue by utilizing complex weighted networks with continuous-time oscillatory or discrete-time evolutionary-game dynamics. For any node, compressive sensing enables accurate reconstruction of the dynamical equations and coupling functions, provided that time series from this node and all its neighbors are available. For a neighboring node of the hidden node, this condition cannot be met, resulting in abnormally large prediction errors that, counterintuitively, can be used to infer the existence of the hidden node. Based on the principle of differential signal, we demonstrate that, when strong noise is present, insofar as at least two neighboring nodes of the hidden node are subject to weak background noise only, unequivocal identification of the hidden node can be achieved.
منابع مشابه
On the effect of low-quality node observation on learning over incremental adaptive networks
In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملSynchronization analysis of complex dynamical networks with hybrid coupling with application to Chua’s circuit
Complex dynamic networks have been considered by researchers for their applications in modeling and analyzing many engineering issues. These networks are composed of interconnected nodes and exhibit complex behaviors that are resulted from interactions between these nodes. Synchronization, which is the concept of coordinated behavior between nodes, is the most interested behavior in these netwo...
متن کاملAn Energy Efficient Clustering Method using Bat Algorithm and Mobile Sink in Wireless Sensor Networks
Wireless sensor networks (WSNs) consist of sensor nodes with limited energy. Energy efficiency is an important issue in WSNs as the sensor nodes are deployed in rugged and non-care areas and consume a lot of energy to send data to the central station or sink if they want to communicate directly with the sink. Recently, the IEEE 802.15.4 protocol is employed as a low-power, low-cost, and low rat...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کامل